Reinforcement learning for qualitative group behaviours applied to non-player computer game characters
نویسنده
چکیده
This thesis investigates how to train the increasingly large cast of characters in modern commercial computer games. Modern computer games can contain hundreds or sometimes thousands of non-player characters that each should act coherently in complex dynamic worlds, and engage appropriately with other non-player characters and human players. Too often, it is obvious that computer controlled characters are brainless zombies portraying the same repetitive hand-coded behaviour. Commercial computer games would seem a natural domain for reinforcement learning and, as the trend for selling games based on better graphics is peaking with the saturation of game shelves with excellent graphics, it seems that better artificial intelligence is the next big thing. The main contribution of this thesis is a novel style of utility function, group utility functions, for reinforcement learning that could provide automated behaviour specification for large numbers of computer game characters. Group utility functions allow arbitrary functions of the characters’ performance to represent relationships between characters and groups of characters. These qualitative relationships are learned alongside the main quantitative goal of the characters. Group utility functions can be considered a multi-agent extension of the existing programming by reward method and, an extension of the team utility function to be more generic by replacing the sum function with potentially any other function. Hierarchical group utility functions, which are group utility functions arranged in a tree structure, allow character group relationships to be learned. For illustration, the empirical work shown uses the negative standard deviation function to create balanced (or equal performance) behaviours. This balanced behaviour can be learned between characters, groups and also, between groups and single characters. Empirical experiments show that a balancing group utility function can be used to engender an equal performance between characters, groups, and groups and single characters. It is shown that it is possible to trade some amount of quantitatively measured performance for some qualitative behaviour using group utility functions. Further experiments show how the results degrade as expected when the number of characters and groups is increased. Further experimentation shows that using function approximation to approximate the learners’ value functions is one possible way to overcome the issues of scale. All the experiments are undertaken in a commercially available computer game engine. In summary, this thesis contributes a novel type of utility function potentially suitable for training many computer game characters and, empirical work on reinforcement learning used in a modern computer game engine.
منابع مشابه
Adapting Reinforcement Learning for Computer Games: Using Group Utility Functions
Group utility functions are an extension of the common team utility function for providing multiple agents with a common reinforcement learning signal for learning cooperative behaviour. In this paper we describe what group utility functions are and suggest using them to provide non-player computer game character behaviours. As yet, reinforcement learning techniques have very rarely been used f...
متن کاملAn Adaptive Learning Game for Autistic Children using Reinforcement Learning and Fuzzy Logic
This paper, presents an adapted serious game for rating social ability in children with autism spectrum disorder (ASD). The required measurements are obtained by challenges of the proposed serious game. The proposed serious game uses reinforcement learning concepts for being adaptive. It is based on fuzzy logic to evaluate the social ability level of the children with ASD. The game adapts itsel...
متن کاملApprentissage par renforcement factorisé pour le comportement de personnages non joueurs
In this paper, we apply a general reinforcement learning method to automatically design the behavior of non player characters of the Counter-Strike first person shooter computer game. The result of the learning process is a set of decision trees that represents compactly and easily readable a model of the problem itself and the decision policy of characters. Beyond this example, we discuss the ...
متن کاملApplying Agent Modeling to Behaviour Patterns of Characters in Story-Based Games
Most story-based games today have manually-scripted non-player characters (NPCs) and the scripts are usually simple and repetitive since it is timeconsuming for game developers to script each character individually. ScriptEase, a publicly-available author-oriented developer tool, attempts to solve this problem by generating script code from high-level design patterns, for BioWare Corp.'s role-p...
متن کاملTowards autonomous behavior learning of non-player characters in games
Non-Player-Characters (NPCs), as found in computer games, can be modelled as intelligent systems, which serve to improve the interactivity and playability of the games. Although reinforcement learning (RL) has been a promising approach to creating the behaviour models of non-player characters (NPC), an initial stage of exploration and low performance is typically required. On the other hand, im...
متن کامل